Find the RIGHT Information Fast

Lee Vucovich, lvucovi@uab.edu
UAB Lister Hill Library
6/29/2015
UAB CCTS SRTP Summer Trainees
Information Explosion

- PubMed:
 - Over 24,000,000 citations
 - 2,000-4,000 new citations added daily

- STM Journals:
 - 5000++ publishers publish 28,000 English, peer reviewed journals
 - 500+ new journals launched per year
 - 2.5 million new articles produced per year

- Open Access:
 - DOAJ indexes over 10,471 journals
 - Adds new journals daily
Today’s Topics

- Choosing the right resource/tool
 - Background information
 - Clinical questions
 - Research
- Searching efficiently (& getting full text articles)
 - PubMed, Embase, & Scopus
 - Advanced searches, filters, automatic updates
- Metrics
 - Journal Rankings
 - Where to publish
 - Who’s citing your work?
LHL Website: www.uab.edu/lister
WHAT KIND OF INFORMATION DO YOU NEED?
Background Information: Use Books & E-books
Clinical Questions? Use Evidence-based Clinical Summaries

http://www-uptodate-com.ezproxy3.lhl.uab.edu/home/help-demo

Demonstrations

Dynamed: http://youtu.be/q-kkeyq1M6k
Articles: Use Journal Citation Databases
SEARCHING EFFICIENTLY AND GETTING FULL TEXT

Nicole L. Day, Condace L. Floyd, Tracy L. D'Alessandro, William J. Hubbard, and Irshad H. Chaudry

You have requested the following:

17β-Estradiol Confers Protection after Traumatic Brain Injury in the Rat and Involves Activation of G Protein-Coupled Estrogen Receptor 1

INSTANT ACCESS OPTIONS

- PAY PER VIEW Journal of Neurotrauma - 30 (17):1531-1541; 17β-Estradiol Confers Protection after Traumatic Brain Injury in the Rat and Involves Activation of G Protein-Coupled Estrogen Receptor 1 (access for 24 hours for US $59.00)

ADD TO CART
To access LHL’s licensed resources from off campus, log in.

For joint enrollment students, select your home institution.

TIP! Always access resources through www.uab.edu/lister

Abstract

Traumatic brain injury (TBI) is a significant public health problem in the United States. Despite preclinical success of various drugs, to date all clinical trials investigating potential therapeutics have failed. Recently, sex steroid hormones have sparked interest as possible neuroprotective agents after traumatic injury. One of these is 17β-estradiol (E2), the most abundant and potent endogenous vertebrate estrogen. The goal of our study was to investigate the acute potential protective effects of E2 or the specific G protein-coupled estrogen receptor 1 (GPER) agonist G 1 when administered in an intravenous bolus dose 1 hour post-injury in the lateral fluid percussion (LFP) rodent model of TBI. The results of this study show that, when assessed at 24 hours post-injury, E2 or G 1 confers protection in adult male rats subjected to LFP brain injury. Specifically, we found that an acute bolus dose of E2 or G 1 administered intravenously 1 hour post-TBI significantly increases neuronal survival in the ipsilateral CA 2/3 region of the hippocampus and decreases neuronal degeneration and apoptotic cell death in both the ipsilateral cortex and CA 2/3 region of the hippocampus. Finally, these effects were observed to be dose-dependent for E2, with the 5 mg/kg dose generating a more robust level of protection. Our findings further elucidate estrogenic compounds as a clinically relevant pharmacotherapeutic strategy for treatment of secondary injury following TBI, and intriguingly, reveal a novel potential therapeutic target in GPER.

Key words: apoptotic; estrogen; lateral fluid percussion; neuronal degeneration; neuroprotection

Introduction

Traumatic brain injury (TBI) is a significant public health problem in the United States. Annually, approximately 1.7 million TBIs are incurred, 53,000 people die, and 3.2-5.3 million others are living with long-term disabilities as a result. Despite preclinical success, to date all clinical trials investigating potential therapeutics have failed. In addition, the financial burden associated with TBI is estimated at roughly $50 billion a year.13 TBI-induced biochemical (primary injury) and neurochemically-mediated damage (secondary injury) often lead to deficits in cognitive, motor, psychiatric, and physical functioning.14 Secondary injury mechanisms remain targets in the pathophysiology of TBI that could be manipulated by therapeutic interventions for prevention of further cell death and dysfunction. Thus, there is a significant interest need for novel drug therapies that efficaciously target aspects of secondary injury.

Recently, sex steroid hormones have sparked interest as possible therapeutic agents following traumatic injury. One of these is 17β-estradiol (E2), the most abundant and potent endogenous vertebrate estrogen. Our research group has previously reported that E2 administration confers protection in models of spinal cord injury (SCI) and severe blood loss. In prior TBI research, E2 has been shown to reduce cortical contusion volumes, apoptosis, blood-brain barrier permeability, edema, levels of pro-inflammatory cytokines, and intracranial pressure (ICP), as well as to upregulate expression of anti-apoptotic proteins Bcl-2, increase central perfusion pressure (CPP), and improve neurologic scores.12-20 Taken together, these data suggest that E2 is protective and warrant further study as a potential therapeutic for treatment of TBI. E2 signals through the classical estrogen receptors α and β (ER/β) and the recently characterized G protein-coupled estrogen receptor 1 (GPER), which binds E2 and various estrogenic compounds, including the GPER-specific agonist, G 1, and initiates rapid intracellular signaling events.21-26 However, GPER’s role in the CNS has yet to be fully characterized, and its potential contributions to protection in TBI remain uninvestigated. Because GPER binds E2 as well as other sex steroids, it could serve as a novel therapeutic target.
Request articles via Option 2

You searched for:
Roth, Justin C. (03/2014). "Evaluation of the Safety and Biodistribution of M032, an Attenuated Herpes Simplex Virus Type 1 Expressing hIL-12, After Intracerebral Administration to Nonhuman Primates". Human gene therapy. Clinical development (2324-8637), 25 (1), p. 16.
DOI: 10.1089/humc.2013.201

Sorry, full text is not available online. See below for additional options or Ask a Librarian.

Option 1: Try Google Scholar for a free version:
by article title

Option 2: Order through ILLiad (ILL) or Get it Now:
UAB Users:
ILL Request Form (Free; usually 24-72 hours) FAQ Request
Get it Now ($6, delivered quickly day or night) FAQ Request

Non-UAB Users:
ILL Request Form: price varies Request

Option 3: Check holdings, then order via ILLiad:
LHL Catalog: by ISSN by Journal Title

Request Article. The form will be populated for you. FREE
PDF is delivered electronically.
Other routes to UAB full text

Google Scholar

http://libguides.lhl.uab.edu/googlescholar/gsfulltext

THOMSON REUTERS
ENDNOTE

http://libguides.lhl.uab.edu/endnote/endnotefindfulltext

Browzine

Download at app store
New at UAB Libraries:
BrowZine: I-Click from TOC to article
Use PubMed to find biomedical articles

Search article citations using “controlled vocabulary”
PubMed

- Is a “gold standard” biomedical database
- Contains over 24 million citations
 - from 5,600+ journals indexed by Medline
 - In Process citations
 - Citations to work by NIH-funded researchers
 - 1946-, includes additional older material
- Is funded by US Government, free for all
- Provides links to full text articles
Immunosuppression regimen and the risk of acute rejection.

Locke JE, James NT, Mannon RB, Mehta SG, Pappas NJ

Author information

Abstract

BACKGROUND: Kidney transplantation (KT) is the treatment of choice for patients with end-stage renal disease. However, acute rejection (AR) remains a significant challenge. Adopting an immunosuppression regimen that minimizes rejection rates while maximizing patient survival is important. This study aimed to evaluate the risk of AR and the impact of different immunosuppression regimens on patient survival.

METHODS: We conducted a retrospective analysis of 516 HIV-positive kidney transplant recipients included in the Registry of Transplant Recipients data from 2003 to 2011.

RESULTS: Compared to HIV-negative patients, HIV-positive transplant recipients had a higher risk of AR (hazard ratio [HR], 1.45; 95% confidence interval [CI], 1.15-1.82; P = 0.001), but these differences were not statistically significant. However, acute rejection rates among patients receiving ATG induction therapy were lower (HR, 0.67; 95% CI, 0.43-0.98). Despite this, HIV-positive patients had a higher risk of graft failure, with a 2.6-fold lower risk of AR (aHR, 0.39; 95% CI, 0.26-0.59) and a 2.2-fold higher risk of graft failure compared to HIV-negative patients.

CONCLUSION: These findings support a role for ATG induction therapy in HIV-positive individuals undergoing KT. However, further research is needed to optimize immunosuppression regimens to minimize AR and improve patient survival in HIV-positive transplant recipients.

PMID: 24162248 [PubMed - indexed for MEDLINE]

MeSH Terms, Substances

MeSH Terms
Adolescent
Adult
Aged
Antilymphocyte Serum/metabolism
Calcineurin/antagonists & inhibitors
Female
Graft Rejection*
Graft Survival
HIV Infections/complications*
HIV Infections/immunology
Humans
Immunosuppression/methods*
Immunosuppressive Agents/therapeutic use*
Kidney Failure, Chronic/complications
Kidney Failure, Chronic/therapy*
Kidney Transplantation/methods*
Male
Middle Aged
Multivariate Analysis
Registries
Risk
Sirolimus/chemistry
Treatment Outcome
Young Adult

Substances
Antilymphocyte Serum
Immunosuppressive Agents
Calcineurin
Sirolimus
Demonstration videos:
http://libguides.lhl.uab.edu/content.php?pid=358964&sid=2935476
Pubmed Clinical Queries

www.ncbi.nlm.nih.gov/pubmed/clinical

PubMed Clinical Queries

Results of searches on this page are limited to specific clinical research areas. For comprehensive searches, use PubMed directly.

Search Criteria:
- Condition: Parkinson disease deep brain stimulation

Clinical Study Categories
- Category: Therapy
- Scope: Narrow

Systematic Reviews
- Results: 5 of 68
- Which target is best for patients with Parkinson's disease psychosis? A meta-analysis of pallidal and subthalamic stimulation.

Medical Genetics
- Topic: Molecular Genetics
- Results: 5 of 56
- Deep brain stimulation modulates nonsense-mediated RNA decay in Parkinson's patients leukocytes.

- Neurokinin factor expression in
PubMed Topic Specific Queries

www.nlm.nih.gov/bsd/special_queries.html
PubMed Searching Tips

- View the *Details* box to check your search
- Consider MeSH headings and subheadings to focus search
- Apply limits (age groups, publication type etc)
- Combine searches on Advanced search page
- Link to full text with
- Check “related articles”
- Remember PubMed doesn’t include everything
- Ask a Librarian if you get stuck
Save searches and set Alerts

Demonstrations
Filters: www.youtube.com/watch?v=BWbQrrYbGiY
Custom filters: www.youtube.com/watch?v=6EuR0VKCWyY
New at UAB! EMBASE
Embase:

- Is Elsevier's comprehensive biomedical database.
- Includes 29 million indexed records from international biomedical literature.
- Is one of the gold standard databases for systematic reviews.
- Complements PubMed with unique content:
 - Over 2700 journals not indexed on PubMed/MEDLINE, especially from countries outside North America
 - Over 300,000 conference abstracts (since 2009)
 - EMTREE controlled vocabulary with in-depth drug and medical device indexing
Embase videos and handouts:

http://libguides.lhl.uab.edu/ccts/Embase
Save searches and set alerts

Create alerts from saved searches or search histories
Open them from the Tools tab
Embase Search Tips

- Break up your search into individual topics/searches. Edit and refine each concept.
 - Look at Index Terms of relevant records for possible index terms that you haven’t yet considered.
 - Scan titles and/or abstracts for alternative search terms.
 - Or, start by browsing EMTREE for terms.
- Combine searches on the Search Results page.
- Be sure to change/modify your limits.
- View a relevant record from your search results and click on Related Articles to find more articles.
- Use UAB Article Linker off campus to access PDFs.
Scopus

Keyword search of records

- 21,000 journals indexed, over 50,000,000 records
- Includes references, forward citations, and author metrics
- 5.5 million conference papers & 25.2 million patents
- Interdisciplinary with international scope
- Includes Medline records and EMBASE content
Use Scopus:

- To search the interdisciplinary or international literature
- To see the **reference list** and **forward cites** to an article
- To rank result sets by relevance or times cited
- To find possible journals to publish in
- To see who is citing your work

Learn more: http://libguides.lhl.uab.edu/scopus
Tumor necrosis factor alpha inhibitor therapy and cancer risk in chronic immune-mediated diseases

Objective: To compare the incidence of cancer following tumor necrosis factor alpha (TNF-α) inhibitor therapy to that commonly used alternative therapies across multiple immune-mediated diseases. Methods: The Safety Assessment of Biological Therapeutics study used data from four sources: national Medicare and Medicaid databases, Tennessee Medicaid, pharmacy benefits plans for Medicare beneficiaries in New Jersey and Pennsylvania, and Kaiser Permanente Northern California. Propensity score-adjusted hazard ratios and 95% confidence intervals were computed to estimate the relative rates of cancer, comparing those treated with TNFα inhibitors to those treated with alternative disease-modifying therapies. The cancer-finding algorithm had a positive predictive value ranging from 31% for any leukemia to 89% for female breast cancer. Results: We identified 29,955 patients with rheumatoid arthritis (RA) (13,122 person-years), 6,357 patients with inflammatory bowel disease (IBD) (1,583 person-years), 1,098 patients with psoriasis (731 person-years), and 2,468 patients with psoriatic arthritis (618 person-years). The incidence of any solid cancer was not elevated in RA (HR 0.80 [95% CI 0.59-1.08]), inflammatory bowel disease (HR 1.42 [95% CI 0.47-4.26]), psoriasis (HR 0.58 [95% CI 0.30-1.03]), or psoriatic arthritis (HR 0.74 [95% CI 0.20-2.76]) during TNFα inhibitor therapy compared to disease-specific alternative therapy. Among RA patients, the incidence of any of the 10 most common cancers in the US and nonmelanoma skin cancer was not increased with TNFα inhibitor therapy compared to treatment with comparator drugs. Conclusion: Short-term cancer risk was not elevated among patients treated with TNFα inhibitor therapy relative to commonly used therapies for immune-mediated chronic inflammatory diseases in this study. Copyright © 2013 by the American College of Rheumatology.

Indexed keywords:
- EMTree: drug terms: adalimumab, azathioprine, etanercept, hydroxychloroquine, infliximab, leflunomide, mercaptopurine, methotrexate, retinoid derivative, salazosulfapyridine; steroid; tumor necrosis factor alpha inhibitor.
- EMTree: medical terms: adult; aged; algorithm; anklyosing spondylitis; arthritis; breast cancer; cancer; cancer incidence; cancer risk; orantid; female; human; immunopathology; leukemia; major clinical study; male; phototherapy; priority journal; psoriasis; rheumatoid arthritis; side effect; skin cancer; solid tumor; steroid therapy; United States.
- MoSH: Adult; Aged; Antibodies, Monoclonal; Chronic Disease; Cohort Studies; Female; Follow-Up Studies; Humans; Immunologic Factors; Incidence; Male; Middle Aged; Neoplasm; Retrospective Studies; Risk Factors; Tumor Necrosis Factor-alpha.

Mendeley References:
- 38 references

Cited by 18 documents:
- Overview of biologic treatments in the elderly
- Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk
- Safety of synthetic and biological DMARDs: A systemic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis
- Do inflammatory bowel disease therapies cause cancer?
- Cancer risk in immunemediated inflammatory diseases (IMID)
- Infections and malignant complications of TNF inhibitor therapy in IBD
- Medical and the is source for the MoSH terms of this document.

Chemicals and CAS Registry Numbers: adalimumab, 331731-18-1; azathioprine, 448-80-6; etanercept, 185234-69-0; hydroxychloroquine, 118-42-3; 525-31-5; infliximab, 170277-31-3; leflunomide, 75075-12-6; mercaptopurine, 31441-78-8; 50-44-2; 6112-76-1; methotrexate, 15475-56-8; 59-05-2; 7413-34-5; salazosulfapyridine, 599-79-9; Antibodies, Monoclonal; Immunologic Factors; Tumor Necrosis Factor-alpha.
Set Scopus Alerts
Set Scopus citation Alert

Learn more:
http://libguides.lhl.uab.edu/content.php?pid=262346&sid=2176445
Scopus Analytics
Data to Inform Publication decisions

Learn more:
http://libguides.lhl.uab.edu/content.php?pid=262346&sid=2176439
ADDITIONAL PUBLICATION METRICS
JCR Web: Find Impact Factors

Select a JCR edition and year:

- JCR Science Edition 2014
- JCR Social Sciences Edition 2014

Select an option:

- View a group of journals by Subject Category
- Search for a specific journal
- View all journals

SUBMIT
Journal: Science Translational Medicine

<table>
<thead>
<tr>
<th>Mark</th>
<th>Journal Title</th>
<th>ISSN</th>
<th>Total Cites</th>
<th>Impact Factor</th>
<th>5-Year Impact Factor</th>
<th>Immediacy Index</th>
<th>Citable Items</th>
<th>Cited Half-life</th>
<th>Citing Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCI TRANSL MED</td>
<td>1946-6234</td>
<td>13031</td>
<td>15.843</td>
<td>13.845</td>
<td>3.543</td>
<td>219</td>
<td>2.7</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Cited Journal | Citing Journal | Source Data | Journal Self Cites

CITED JOURNAL DATA | CITING JOURNAL DATA | IMPACT FACTOR TREND | RELATED JOURNALS

Impact Factor Trend Graph: Science Translational Medicine

Click on the "Return to Journal" button to view the full journal information.

Impact Factor Box Plot

- This is a box plot of the subject category MEDICINE, RESEARCH & EXPERIMENTAL. It provides information based on Impact Factor values. It shows median, 25th and 75th percentiles, and the extreme values.

- MEDICINE, RESEARCH & EXPERIMENTAL

- **Subject Category**

- **JCR Years**

- **Impact Factor Values**:
 - 2010: 3.292
 - 2011: 7.884
 - 2012: 15.757
 - 2013: 14.414
 - 2014: 15.843
Further Reading

Journal Impact Factor:

SJR/SNP (Scopus):

http://www.journalmetrics.com/faq.php

Google Scholar:

Online Help

[Image of a webpage with options for Ask a Librarian, Catalog, Databases, FAQs, and News. The Ask a Librarian section is highlighted with an option for online help 24/7.]